On Whitham ’ s Averaging Method

نویسندگان

  • A. Ya. Maltsev
  • M. V. Pavlov
چکیده

Introduction. Whitham's averaged equations [1] for a nonlinear evolution system describe slow modulations of parameters on a family of periodic traveling wave solutions (or on families of multiphase quasiperiodic solutions, which are so far knows to exist only for integrable equations) and are a system of hydrodynamic type [2, 3], that is, of the form

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydrodynamics of Weakly Deformed Soliton Lattices. Differential Geometry and Hamiltonian Theory Hydrodynamics of Weakly Deformed Soliton Lattices. Differential Geometry and Hamiltonian Theory

CONTENTS Introduction 35 Chapter I. Hamiltonian theory of systems of hydrodynamic type 45 § 1. General properties of Poisson brackets 45 §2. Hamiltonian formalism of systems of hydrodynamic type and 55 Riemannian geometry §3. Generalizations: differential-geometric Poisson brackets of higher orders, 66 differential-geometric Poisson brackets on a lattice, and the Yang-Baxter equation §4. Rieman...

متن کامل

v 2 5 O ct 1 99 9 The conservation of the Hamiltonian structures in Whitham ’ s method of averaging

The conservation of the Hamiltonian structures in Whitham's method of averaging. Abstract The work is devoted to the proof of the conservation of local field-theoretical Hamiltonian structures in Whitham's method of averaging. The consideration is based on the procedure of averaging of local Pois-son bracket, proposed by B.A.Dubrovin and S.P.Novikov. Using the Dirac procedure of restriction of ...

متن کامل

Remarks on the Whitham Equations

We survey some topics involving the Whitham equations, concentrating on the role of ψψ∗ (or square eigenfunctions) in averaging and in producing Cauchy kernels and differentials on Riemann surfaces.

متن کامل

The Whitham Equations Revisited

We survey some topics involving the Whitham equations, concentrating on the role of ψψ∗ (or square eigenfunctions) in averaging. Some connections to symplectic geometry and SeibergWitten theory are indicated.

متن کامل

Various Aspects of Whitham Times

We sketch some of the different roles played by Whitham times in connection with averaging, adiabatic invariants, soliton theory, Hamiltonian structures, topological field theory (TFT), Seiberg-Witten (SW) theory, isomonodromy problems, Hitchin systems, WDVV and PicardFuchs equations, renormalization, soft supersymmetry breaking, etc.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003